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Abstract:  The intelligent water drop algorithm is a swarm-based metaheuristic algorithm inspired by the properties of river water 

droplets and the environmental changes caused by the moving river's movement. The technique has found applications in a broad 

variety of combinatorial and functional optimization problems since its inception as an alternative stochastic optimization 

approach. This article discusses an enhanced intelligent water drop method for resolving multi-depot vehicle routing problems 

MATLAB R2019b software was used to test a set of two separate Cordeau's benchmark examples (p04, p05) from the University 

of Malaga's online repository. The results were evaluated in terms of the depot’s route length, optimal route, and optimal distance. 

 

Index Terms - Metaheuristic algorithm, Multiple Depot Vehicle Routing Problem, Intelligent Water Drop algorithm. 

I. INTRODUCTION 

MDVRP has been subjected to several heuristic algorithms. Classical heuristics and current metaheuristics are two types of 

heuristic algorithms. Due to the superiority of heuristic algorithms for large-scale issues, metaheuristic algorithms are mostly 

employed in the literature for MDVRP types. 

ACO is a relatively recent optimization technique suggested by Dorigo et al. [1]. Ant Colony Optimization methods, which are 

inspired by the phenomena of ants finding the shortest path to food and hence fall under the category of metaheuristics, are 

extensively utilized in the literature to study MDVRP and its variations. Demirel and Yilmaz [2] suggested a method for solving 

MDVRP based on ACO. Yu et al. [3] demonstrated an improved ACO for MDVRP using a coarse-grain parallel method, an ant-

weight technique, and a mutation operation. Stodola [4] discussed the modified MDVRP (M-MDVRP), in which the optimization 

criteria were changed. The usual MDVRP optimization criteria is to minimize the total sum of all vehicles' routes, but the M-

MDVRP criterion aims to minimize the longest route of all vehicles, i.e., the vehicle's journey time is as short as feasible. 

Additionally, they devised a metaheuristic method for solving standard MDVRP cases based on Ant Colony Optimization theory-

which was updated and adapted for M-MDVRP. They evaluated outcomes using Cordeau's benchmark cases. ACO was used in 

many studies [5,6,7] to solve versions of MDVRP, including MDVRP with multiple goals and MDVRP with time frames. 

Additionally, the genetic algorithm is a kind of metaheuristic. Ho and colleagues [8] created two hybrid genetic algorithms 

(HGAs). The initialization mechanism of HGA1 is random. HGA2 generated initial solutions using the Clarke and Wright saving 

approach and the closest heuristic neighbor. To resolve the VRP with homogenous vehicles, Dantzig and Ramser [9] used a phased 

aggregation technique. Clarke and Wright [10] proposed an additional approach using several truck capacities. While Ho et al. used 

CWS to solve a single VRP, we divided the VRP into many Traveling Salesman Problems (TSPs) [11] and solved them using 

CWS. For the TSP, the CWS lifted the vehicle capacity constraint, allowing for easy implementation and near-optimal outcomes in 

a short period of time. Karakati and Podgorelec [12] conducted a study of genetic algorithms for MDVRP solution. The exact 

techniques, operators, and settings are offered to assist researchers and practitioners in further optimizing their solutions. 

The majority of studies used the local search method. Local search is a refinement of the hill-climbing algorithm. Juan et al. 

[13] solved MDVRP using two biased-randomized processes that used the geometric probability distribution at various phases of 

the iterated local search (ILS) framework. Li et al. [14] solved the MDVRP with simultaneous deliveries and pickups 

(MDVRPSDP) and implemented an adaptive neighbourhood selection method in the improvement and perturbation phases of 

iterated local search, respectively. Ahmadi [15] developed a variable neighbourhood search method for solving the deterministic 

MDVRP model in order to streamline humanitarian logistics operations. Alinaghian and Shokouhi [16] devised a hybrid method 

that combines adaptive big neighbourhood search and variable neighbourhood search to handle this issue, which occurs when each 

vehicle's cargo area has many compartments, each of which is devoted to a certain kind of goods. Ahmadi Vidal et al. [17] used a 

genetic algorithm in conjunction with neighbourhood selection procedures to control variety in a vast class of time-window vehicle 

routing issues. 
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II. MULTI-DEPOT VEHICLE ROUTING PROBLEM 

MDVRP issues [18] are conventional VRP problems with a comparable expression to the regular VRP problem. MDVRP utilises 

multiple depots and is far more difficult than single depot VRP. The fundamental objective of the multi-depot VRP is to minimise 

distances and routes, as well as available vehicles, and to keep costs down. MDVRP's goal functions are listed below [18, 19, 21, 

20]. 

1. To keep the solution's cost as low as possible 

2. To decrease travel distance 

3. To limit the number of routes 

4. To keep the vehicle's total size as small as possible 

5. Fulfillment of client demand/satisfaction of customers. 

The limitations on solving MDVRP are as follows: 

1. Each client should not be serviced more than once 

2. Each tour should depart from many depots situated in various locations. 

3. The maximum number of vehicles available should not be exceeded. 

4. The capacity of the vehicle shall not exceed the capacity limit. 

After visiting the assigned consumers, each vehicle shall return to the depot where it was begun. 

 

Fig. 2.1 Example of MDVRP using 2 depots 

III. METHOD 

We will now explain our suggested technique, but first, a concise description of the IWD algorithm will be given. Then, on the 

different benchmark Problems, use the suggested IWD method. 

 

3.1 IWD Algorıthm  

 Shah Hosseini was the first to introduce the IWD algorithm (2009) [22]. The IWD algorithm is a genetic algorithm that 

is based on the driving of river schemes and activities that occur between water droplets in a waterway. The IWD method has 

been successfully used for a variety of difficult optimization issues [27]. [22] used the IWD algorithm to the issue of a traveling 

salesman and found near-optimal solutions. Hosseini further applied the IWD technique to a variety of difficult issues, including 

the multiple knapsack problems [22] and the clustering problem [23]. [24] Successfully substituted the IWD approach with the 

well-known Genetic Algorithm (GA) for different experimental functions in order to get multimodal peaks by demonstrating that 

IWD takes a shorter time to convergence. For optimizing COQUAMO, [25] employed the IWD method, which is a replication 

used to approximate the superiority of the software project. As a consequence of this change, a more accurate assessment of 

software development quality may be made. 

IWDs have two critical qualities in the IWD method that regulate the process of determining the best possible route to 

their destination [26]. The water drop's velocity and the quantity of dirt it carries while traveling are these qualities. During the 

algorithm's execution, both characteristics change. Less dirt signifies higher velocity in the IWD algorithm, therefore IWDs pick 

paths with less soil on their connections. Sherylaidah Samsuddin et al. [28] proposes a method testing in which they have applied 

Ant colony optimization and IWD method both to solve MDVRP, Kumar, Saroj, et al.[29] introduced a genetic algorithm based 

IWD to solve optimal path optimization problem and [30] proposed a hybrid IWD method to solve timetable problem in 

examination. 

An IWD progresses from a starting point to a destination. The IWD's speed and quantity of dirt are both 0 at first. During 

its journey, the water drop passes through its surroundings, removing some dirt and sometimes gaining speed. From one place to 

the next, the speed of IWD increases in a nonlinear, inversely proportional manner to the difference in soil level. As a result, an 

IWD in a route with less dirt moves quicker than one in a pathway with more soil. In IWD, the mechanism is to pick the path to 

its next point. The IWD prefers paths with low soil levels over pathways with high soil levels in this process. This route selection 

behaviour is accomplished by creating a uniform random distribution on the soils of the available pathways. The likelihood of 

selecting the next step is hence inversely linked to the soil level of the available pathways. As a result, pathways with lower soil 

levels have a better chance of being picked by the IWD. 
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Next, we specify the major steps of the IWD algorithm as explained by [22]. 

 

 

Step-1:  Initialize the static parameters: 

Imax = max no of iterations 

NIWD = no of water drops 

av,bv,cv = velocity update parameters 

as,bs,cs = soil update parameters 

ρIWD = global soil update 

ρn = local soil update 

init_soil = initial soil on all paths soil(i,j) 

init_vel = initialize velocity for IWDs veliwd 

Step-2: Initialize dynamic parameter: 

velIWD = {}  (initially each IWD has an empty customer list) 

Step-3: For each IWD 

 Vehicle(k) start from the depot 

 From customer node i to select the next node j (to build customer visited list) 

Using the probability given by: 

𝑃𝐼𝑊𝐷(𝑖, 𝑗) =
𝑓(𝑠𝑜𝑖𝑙(𝑖,𝑗))

𝛴𝑚∉𝑣𝑒𝑙𝐼𝑊𝐷
𝑓(𝑠𝑜𝑖𝑙(𝑖,𝑚))

           (3.1) 

𝑓(𝑠𝑜𝑖𝑙(𝑖, 𝑗)) =
1

𝜖𝑠+𝑔(𝑠𝑜𝑖𝑙(𝑖,𝑗))
              (3.2) 

𝑔(𝑠𝑜𝑖𝑙(𝑖, 𝑗)) = { 
𝑠𝑜𝑖𝑙(𝑖,𝑗) − 𝑚𝑖𝑛𝑙∈𝑣𝑒𝑙𝐼𝑊𝐷

(𝑠𝑜𝑖𝑙(𝑖,𝑙))        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑜𝑖𝑙(𝑖,𝑗)                                               𝑖𝑓 𝑚𝑖𝑛𝑙∈𝑣𝑒𝑙𝐼𝑊𝐷
(𝑠𝑜𝑖𝑙(𝑖,𝑙)) ≥ 0

}      (3.3) 

Here, small positive constant: ∈𝑠 (∈𝑠= 0.0001) prevents the divide-by-zero condition in eq.2. 

Function min in equation 5.3, find the minimum of all the values. 

 Check capacity constraint. If the constraint is violated then go to step 3(I). 

∑ 𝑑𝑘
𝑇𝑘
𝑖=1 (𝑖)  ≤ 𝑄 ∀ 𝑘          (3.4) 

Here, the sum of demands served by kth vehicle is shown as dk(i), which should be less than or equal to the velocity capacity 𝑄. 

Also, rk is total number of customers served by vehicle k. 

 Add the new node in the list velIWD of visited customers and update the following: 

a. Velocity of IWD 

 𝑣𝑒𝑙𝐼𝑊𝐷(𝑡 + 1) = 𝑣𝑒𝑙𝐼𝑊𝐷(𝑡) +
𝑎𝑣

𝑏𝑣 + 𝑐𝑣.𝑠𝑜𝑖𝑙(𝑖,𝑗)
         (3.5) 

b. Soil loaded from the path(i,j) 

𝑙𝑜𝑎𝑑_𝑠𝑜𝑖𝑙(𝑖, 𝑗) =
𝑎𝑠

𝑏𝑠 + 𝑐𝑠.𝑡𝑖𝑚𝑒(𝑖,𝑗;𝑣𝑒𝑙𝐼𝑊𝐷𝑠𝑜𝑖𝑙(𝑡+1))
       (3.6) 

Such that, 

𝑡𝑖𝑚𝑒(𝑖, 𝑗; 𝑣𝑒𝑙𝐼𝑊𝐷𝑠𝑜𝑖𝑙(𝑡 + 1) =
𝐻𝑈𝐷(𝑖,𝑗)

𝑚𝑎𝑥(∈𝑣, 𝑣𝑒𝑙𝐼𝑊𝐷(𝑡+1))
       (3.7) 

Where, HUD(i,j) is the Euclidean distance between i & j. ∈𝑣= 0.0001is the small constant used to threshold the negative 

velocities. 

 Update soil on the path(i,j) and carried by IWD using eq. 5.8 & 5.9 respectively. 

𝑠𝑜𝑖𝑙(𝑖, 𝑗) = (1 − 𝜌𝑛). 𝑠𝑜𝑖𝑙(𝑖, 𝑗) − 𝜌𝑛.𝑙𝑜𝑎𝑑𝑠𝑜𝑖𝑙(𝑖, 𝑗)       (3.8) 

𝑠𝑜𝑖𝑙𝐼𝑊𝐷 = 𝑠𝑜𝑖𝑙𝐼𝑊𝐷  +  𝑙𝑜𝑎𝑑𝑠𝑜𝑖𝑙(𝑖, 𝑗)         (3.9) 

where, 𝜌𝑛 is a small constant. 

Step-4: If dimensions are not completed go to step 3(I). 

Step-5: Apply local search: 2-opt + swap 

Step-6: Cost 

𝑐𝑜𝑠𝑡𝐼𝑊𝐷 = ∑ 𝑑𝑖𝑠𝑡(𝑥(𝑖), 𝑥(𝑖 + 1))𝑛=1
𝑖=1         (3.10)  

Step-7: Soil update 

𝑠𝑜𝑖𝑙(𝑖, 𝑗) = (1 + 𝜌𝐼𝑊𝐷). 𝑠𝑜𝑖𝑙(𝑖, 𝑗) − 𝜌𝐼𝑊𝐷 . (
𝑠𝑜𝑖𝑙(𝑖𝑤𝑑)

𝑛𝑜𝑑𝑒𝑠
)       (3.11) 

Step-8: Update memory with best so far solution value 

Step-9: Reset soil after fixed iterations, which lowers the soil content on the paths. 

Step-10: If maximum iterations are completed then stop else go to step 2. 
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Fig. 3.1 Flow Chart of the proposed Algorithm 

IV. RESULTS AND DISCUSSION 

The experiment was implemented in the MATLAB Scripting environment, on Intel(R) Core(TM) i5 CPU M 460  @ 2.53GHz  

(manufacturer: Lenovo). The IWD proposed algorithms parameters are illustrated in table 1. 

Table 4.1: Parameters for Proposed Algorithm 

Parameter Value 
Iteration 60 

𝑎𝑣 1000 

𝑏𝑣 0.01 

𝑐𝑣 1 

𝑎𝑠 1000 

𝑏𝑠 0.01 

𝑐𝑠 1 

Parallel solution to 

find 

3 

No. of Drops 4 

 

Figure 4.1 and 4.3 displayed the routes selected while analyzing the algorithm and selecting the best possible optimal route for the 

problem P04 and P05 respectively. Figures 4 and 6 display the route cost divergence graph on both the problems P04 and P05 

respectively. 
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Fig. 4.1 Route map generated for benchmark problem (P04) 

 

Fig. 4.2 Route cost convergence graph for benchmark P04 problem 

Figure 4.2 and figure 4.4, these two figures demonstrate that, despite the higher computational cost incurred by the e-IWD, both 

the theoretical and e-IWD performed well in terms of solution quality and convergence speed when compared to the theoretical. 

This provides more evidence for the major contributions of the various methodologies used to implement the suggested 

algorithms. Several of these primary tactics include the use of an efficient cost function, approximation of SA's probability of 

acceptance criteria, and the use of SA as an alternative local search approach to enhance the convergence speed of the suggested 

enhanced algorithms. 

 

Fig. 4.3 Route map generated for benchmark problem (P05) 
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Fig. 4.4 Route cost convergence graph for benchmark P05 problem 

 

IV. CONCLUSIONS 

A set of two separate Cordeau benchmark examples, notably p04 and p05 in the MATLAB R2019b environment, are used to 

assess the efficacy of the suggested strategies. Customers were originally assigned to their appropriate depots based on Euclidean 

distance after the issue occurrences were categorized. The Clarke and Wright saving approach assigns clients of the same depot to 

various routes in the routing phase, and each route is sequenced in the scheduling phase. Enhanced IWD is used to optimize the 

planned routes. The suggested heuristic algorithms' simulation results were compared in terms of depot route length and best route. 

The performance of IWD was remarkable in the testing, and the computational time demonstrated that improved e-IWD is 

substantially quicker for addressing the multi-depot vehicle routing issue. In the future, attempts will be made to place more 

realistic limitations on the issue structure, and the suggested technique will be applied to large-scale real-time situations 
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